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ABSTRACT
This paper introduces a novel approach for the automated de-
tection of rectangular buildings from monocular very high
resolution (VHR) aerial images. The overall idea of this work
is first to decompose the image into small homogeneous re-
gions and treat all regions as candidates. According to the
position of the shadows, a merging process is then performed
over regions having similar spectral characteristics to produce
building regions whose shapes are appropriate to rectangles.
The experimental results prove that the proposed method is
applicable in various areas (high dense urban, suburban, and
rural) and is highly robust and reliable.

Index Terms— Building detection, image segmentation,
Markov random field, very high resolution, remote sensing

1. INTRODUCTION

Automatic detection of buildings in VHR remotely sensed
imagery is of great practical interest for a number of ap-
plications; including urban monitoring, change detection,
estimation of population density, among others. Manual pro-
cessing of images is time-consuming and expensive. Hence,
developing a building detection approach that requires little
or no human intervention has become one of the challenging
problems in remote sensing applications.

There have been a significant amount of work on building
detection from a single optical image in the literature [1–10],
which are mainly based on the extraction of 2-D features,
such as edge/line segments and/or corners. For the incor-
poration of 3-D information, shadows are valuable sources
since a cast shadow is notably strong evidence of an exis-
tence of a building structure [1, 4]. For example, the authors
in [4] utilize cast shadows to interpret the sides and corners
of buildings. Shadows can also support directly the detec-
tion steps [5–8]. The authors [6, 7] proposed a probabilis-
tic landscape approach to model the directional spatial rela-
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tionship between buildings and their shadows. The building
regions are detected by GrabCut partitioning approach over
the landscape generated by shadow regions. The limitation of
these approaches is that in dense urban areas, where a shadow
region can be cast by a group of buildings, these adjoining
buildings might be labeled as a single building.

Considering that most buildings in VHR images appear as
rectangular shapes, some approaches have been proposed to
deal with rectangular building detection in the literature [11–
17]. Several rectangularity measures [18, 19] are designed
to evaluate, on their specific way, how much an object dif-
fers from a perfect rectangle. The standard method for mea-
suring rectangularity is to use the Minimum Bounding Rect-
angle (MBR) of the object. Most of these approaches have
been proposed for LiDAR images [11–14], only two stud-
ies [15, 16] have exploited the rectangularity measures to de-
tect rectangular buildings in optical images.

This paper deals with rectangular building detection in
a variety of areas (high dense urban, suburban, and rural)
with the assumption that buildings have homogeneous spec-
tral features. The proposed method is based on the fact that
from oblique aerial images, a 3D building structure should
cast a shadow. Therefore, the methodology begins with the
detection of shadows cast by building objects. In order to
effectively extract building objects from image, we propose
an original region-level Markov random field (MRF) image
segmentation method. Buildings are extracted based on the
segmentation result, their rectangularity and their location in
respect to shadows. The main novelty of this paper is a new
technique of utilizing shadows for identifying building re-
gions and the combination of geometric and radiometric ap-
proaches to extract buildings.

The remaining paper is organized as follows. Section 2
deals with the detection of shadows cast by buildings. Sec-
tion 3 covers our novel image segmentation method. Section
4 is devoted to the determination of final building regions.
Next, results and discussion are given in Section 5 followed
by Section 6 which contains our conclusions.
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Fig. 1. Removing shadows due to non-building objects: (a) RGB aerial image (b) the detected shadow mask MS (black) and vegetation mask MV (green)
using the method in [20] (c) the expansion regions (pink color) generated after the dilation of the vegetation objects overlaid with the shadow/vegetation map,
(d) the shadow mask after eliminating shadows generated by vegetation, (e) final shadow mask MSB (black) after the post-processing. In all experiments, the
parameters lse and dsh are set to 60 pixels and 16 pixels respectively.

2. DETECTION OF BUILDING SHADOWS

Our methodology begins with the detection of shadows and
vegetation. Shadows generated from vegetation or other non-
building objects are then eliminated by a post-processing pro-
cedure. The remaining shadows are used to identify the pos-
sible locations of building objects.

2.1. Vegetation extraction and shadow detection

We identify vegetation and shadow regions to avoid the false
alarms in building detection and to use shadows as an evi-
dence to detect buildings. In this paper, we employ our recent
shadow/vegetation detection approach [20], that allows to di-
vide the image into three distinct classes: shadow, vegetation,
and others with good precision (as shown in Fig. 1.(b)).

2.2. Post-processing of shadow mask

The illumination angle θ can be empirically estimated by
identifying the illumination vector (e.g. a corner of a building
and its estimated shadow point) and computing the angle from
the north in a clockwise direction. To select shadows gener-
ated by distinct vegetation objects, we investigate, for each
vegetation object of the vegetation mask MV , the shadow
evidence within the close neighborhoods of the vegetation
object. To do that, binary morphological dilation is used,
which allows expanding the shape of the vegetation object.
The direction of the structuring element is determined by the
illumination angle θ and its length lse is empirically chosen.
We then check for shadow evidence within this expansion
region. If there is more than one shadow region occurring
in the expansion region, we select the shadow region that
have a border with vegetation object (as illustrated in Fig. 1).
To eliminate shadows corresponding to relatively short ob-
jects, we found it necessary to compute the diameter of each
shadow object and then filter out the objects whose diameter
is below the predefined threshold dsh. The remaining shadow
mask is denoted as MSB to distinguish from the original
shadow mask MS . The result of the post-processing is shown
in Fig. 1.(e).

3. REGION-LEVEL MRF-BASED MULTIVARIATE
IMAGE SEGMENTATION

3.1. Oversegmentation

Oversegmentation is the first step performed to group spec-
trally similar pixels into small homogeneous regions (super-
pixels). In the proposed approach, oversegmentation algo-
rithm SLIC [21] is performed in the image in which shadow
regions MS and vegetation regions MV are masked out. The
two parameters of SLIC are set as follows. The weighting fac-
torm between color and spatial differences is set to 20, which
can sufficiently preserve the boundaries of building objects
and the number of superpixels is set so that the initial super-
pixel size ηsup is 200 pixels (see [21] for more details). As
shown in Fig. 2.(b), oversegmentation generates regular-sized
regions with good boundary adherence.

3.2. RAG and Image Segmentation Problem Statement

Starting from this set of regions (denoted by S), a region ad-
jacency graph (RAG) is defined. Each region correspond to
a node of the graph and the relationship between two regions
is given by their adjacency, defining a set E of edges. The
graph G is then G = (S, E). For each node i ∈ S, Ri is
the corresponding region of the image and xi is a realization
of the label Xi of region Ri. Also, let X = (Xi)i∈S denote
the joint random variable and the realization (configuration)
x = (xi)i∈S of X. Suppose image is to be segmented into K
classes. Let L = {l1, . . . , lK} denote the set of class labels.
x is estimated using y = (yi)i∈S where yi is the observation
of all pixels in region Ri, and therefore yi = {yi(s), s ∈ Ri}.
For RGB images, yi(s) is a 3-dimensional feature vector. y
(resp. yi) is a realization of the observation field Y (resp. Yi).

3.3. Markovian regularization

Although MRF in image segmentation are mostly used on the
pixel graph [22], they have also proved to be powerful models
for feature-based graph (RAG [23, 24], line segment graph
[2]). In MRF model, the search for x is defined to maximize
the posterior probability P (X = x|Y = y), or to minimize
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Fig. 2. Experimental results of different stages of the algorithm: (a) original image, (b) SLIC oversegmentation (regions are separated by cyan lines) of the
image in which shadow regions MS and vegetation regions MV are masked out, (c) MRF-based image segmentation (clusters are separated by red lines), (d)
detected building segments (boundaries are delineated by violet lines) based on shadow mask MSB , (e) detected buildings (boundaries are delineated by blue
lines). For all experiments, the parameters m, ηsup, β, TbdShadow , Rmin are set to 20, 200, 150, 10, 0.7 respectively.

the energy function:

U(x, y) = U1(y|x) + U2(x) (1)

Due to the independence assumption of the regions, the likeli-
hood term can be written: U1(y|x) =

∑
i∈S Ui(yi|xi). In this

paper, Gaussian distribution is adopted to describe the image
model. So, in cases where xi takes the class label lk:

Ui(yi|xi) =
∑
s∈Ri

1

2
×(log(|Σk|)+[yi(s)− µk]T Σ−1

k [yi(s)− µk])

µk, Σk are mean and covariance of class lk. For the prior
term U(x), we restrict our attention to MRF’s whose clique
potentials involve pairs of neighboring nodes ({i, j} ∈ E).
The prior term is defined as follows:

U2(x) =
∑
i∈S

∑
j∈Ni

ni ×
bij
bi
× β

|ȳi − ȳj |
× (1− δ(xi − xj))

where δ(·) stands for the Kronecker’s delta function, Ni ⊂ S
is the neighbors of the node i, ni is the number of pixels in
region Ri, bi is the length of boundary of region Ri, bij is
the length of common boundary of region Ri and region Rj .
ȳi is the mean intensity of region Ri. Two constraints, the
normalized edge weight bij/bi and the inversed difference
|ȳi − ȳj |

−1 mean that if two regions share a long boundary
and have similar mean intensity, they have high probabil-
ity to obtain the same class label. β represents the tradeoff
between fidelity to the observed image and the smoothness
of the segmented image. The solution for Eq. (1) can be
found by the ICM algorithm [25]. For the initialization,
a Region-level K-Means algorithm [24] is used. The pa-
rameters of MRF model are estimated at each iteration of

ICM algorithm as follows: µk =

∑
i∈Ωk

∑
s∈Ri

yi(s)∑
i∈Ωk

∑
s∈Ri

1
,

Σk =

∑
i∈Ωk

∑
s∈Ri

(yi(s)− µk)(yi(s)− µk)T∑
i∈Ωk

∑
s∈Ri

1
where Ωk

denotes the set of nodes whose class label is lk. The pa-
rameter β is empirically chosen. After the segmentation,
connected regions that have similar spectral characteristics
are grouped into cluster (a cluster is a group of neighboring

regions having the same class label). An example of the seg-
mentation result is shown in Fig. 2.(c) (clusters are separated
by red lines).

4. DETERMINATION OF BUILDING REGIONS

4.1. Determination of Building Segments

After the oversegmentation, image is decomposed into vari-
ous small regions. The goal now is to determine what regions
are belong to a “building”. For simplicity, this type of re-
gions is called as building segment. For each shadow object
of shadow mask MSB , the regions bordering the shadow ob-
ject in the opposite direction of the illumination angle will
be identified as building segments. Since region that shares a
larger border with shadows is more likely to be a building seg-
ment, only regions whose border with shadows is larger than
a predefined threshold (TbdShadow) is flagged as a building
segment (as shown in Fig. 2.(d)).

4.2. Determination of Final Buildings Regions

One approach to describe the rectangularity of an object,
which relates the area of a segment and its bounding box,
was proposed in [18]. In this paper, we use RD [18, section
2.4] as the R-score (rectangularity measure). Within each
cluster, we check all possible combinations of regions to pro-
duce rectangular buildings. A building is a combination of
connected regions that satisfy two conditions. The first one is
that it contains at least one building segment. The second one
is that its R-score is superior to the preset threshold Rmin.
The final building is the biggest among all possible buildings
satisfying these two conditions (as shown in Fig. 2.(e)).

5. EXPERIMENTS

The proposed method is tested on NOAA aerial images of 24
cm resolution. The reference data consisting of building re-
gions were manually produced by a qualified human operator.
The final performance of the proposed approach is assessed
by comparing the results of the proposed approach with the
reference data. Experimental results are shown in Fig. 3 and
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(a) Dense urban area (b) Suburban area (c) Rural area

Fig. 3. Result of the proposed building detection approach in dense urban area (a), suburban area (b), rural area (c). Dense urban area is characterized by high
population density and very attached buildings. Suburban area is characterized by residential strip with detached and semi-attached buildings to accommodate
families. Rural area is characterized by lower population density and detached buildings. A visual inspection of the results give the strong impression that the
developed approach is highly robust and that most of the buildings are successfully recovered, without producing too many FP pixels.

Test image Pixel-Based performance (%) Object-Based performance (%)
Precision Recall F1 score Precision Recall F1 score

Urban area 85 94.5 89.5 85.3 88 86.6
Suburban are 92 87.4 89.6 90.3 82 85.9

Rural area 86 88.1 87.0 89.0 84 86.4

Table 1. Numerical results of the proposed building detection approach. To evaluate the performance, both pixel and object-based measures are considered.
For pixel-based evaluation, comparing with the referencing data, true positive (TP), false positive (FP), false negative (FN) pixels, which represent respectively
the correct detections, false alarms, missed building pixels, were counted. For object-based evaluation, like [6, 7], we label an output building object as TP if it
has at least a 60% pixel overlap ratio with a building object in the reference data. We label an output object as FP if the output object of the proposed approach
does not coincide with any of the building objects in the reference data, and we label an output object as FN if the output object corresponds to a reference
object with a limited amount of overlap (< 60%). Thus, it is possible to count TP, FP, FN for object-based evaluation. Using these counts, recall was calculated
as TP/(TP + FN), precision as TP/(TP+FP), and F1 [26] as (2 × precision × recall)/(precision + recall).

Table 1. In terms of an pixel-based point-of-view, the accu-
racy of our proposed method is high (the precision and recall
ratios range from 85% to 95% ). As far as object-based evalu-
ation is concerned, we can conclude that most of the detected
buildings are nearly complete and the results are fairly ac-
ceptable. Especially, in urban areas where a shadow region
can be cast by a group of attached buildings, unlike the ap-
proaches in [6, 7], our proposed approach has the ability to
separate these buildings because they are segmented into dif-
ferent classes. In reality, we separate these buildings based on
their visual appearance.
The proposed approach cannot detect building regions whose
shadow is not visible or missing. Since this method focus only
on rectangular buildings, L-shaped or U-shaped buildings are
partitioned into multiple rectangles. For buildings with arbi-
trary shapes, this method detects only the rectangular part of

building that borders shadow regions.

6. CONCLUSIONS

An efficient approach is proposed for automatic rectangular
building detection from monocular aerial images. Image is
first decomposed into small homogeneous regions. Regions
are then grouped into clusters by a region-level MRF seg-
mentation method. Regions bordering shadows in the oppo-
site direction of the illumination angle are flagged as building
segments. A merging process is performed to merge these
building segments with their neighboring regions in the same
cluster to produce final building regions whose shapes are ap-
propriate to rectangles. The experiments show that the pro-
posed method is able to detect buildings in a variety of areas
(high dense urban, suburban, and rural) with high accuracy.
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