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300 Bd Sébastien Brant - CS 10413 - 67412 Illkirch, France

ABSTRACT

This paper presents a new method for simultaneously
detecting shadows and vegetation in remote sensing images,
based on Otsu’s thresholding method and Dempster-Shafer
(DS) fusion which aims at combining different shadow in-
dices and vegetation indices in order to increase the infor-
mation quality and to obtain a more reliable and accurate
segmentation result. The DS fusion is carried out pixel by
pixel and is incorporated in the Markovian context while ob-
taining the optimal segmentation with the energy minimiza-
tion scheme associated with the MRF. This new approach
is applied on remote sensing images and demonstrates its
efficiency.

Index Terms— Dempster-Shafer theory, multivariate
segmentation, shadow indices, vegetation indices, Markov
random field, remote sensing

1. INTRODUCTION

In recent years, the effects of natural catastrophes and human
activities have emphasized the need for developing a broader
view of the Earth. According to cartographic experts, shadow
and vegetation can provide additional geometric and seman-
tic clues about the state of buildings after natural catastrophes.
This work is devoted to simultaneous shadow/vegetation de-
tection. Since the shape features of buildings are extracted
from this detection, correctness and precision of the segmen-
tation are strongly required.

On the one hand, shadow occurs when objects totally or
partially occlude the direct light projected from a source of
illumination. Several publications have appeared in recent
years documenting shadow detection for aerial images [1–
7]. Recent existing shadow detection methods are commonly
based on the assumption that regions under shadow become
darker but retain their chromaticity. Thus, shadow regions can
be detected by choosing a color space with better separation
between chromaticity and intensity than the RGB color space
(eg. HSV [4], c1c2c3 [5], YUV [6], normalised RGB [6]), or a
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combination of them [7]. Other authors exploit the properties
of shadows, in which shadow regions in the general exhibit
lower radiance values over the entire spectrum, and sensor ir-
radiation from shadow regions decreases from short to long
wavelengths due to scattering [8]. Based on these assump-
tions, different shadow indices have been proposed [1, 3, 9].
Most of these methods are simple to implement and compu-
tationally inexpensive. However, because they make compar-
isons at the pixel-level, they are susceptible to noise. They
also fail to exploit image geometric information, lead to typi-
cally unsatisfactory performance for real complex images.

On the other hand, vegetation indices have been used ex-
tensively to estimate the vegetation density from aerial and
satellite images for many years. Beside the so-called Nor-
malized Difference Vegetation Index (NDVI) which is very
popular in vegetation detection [10], [11], different kinds of
vegetation indices which utilize only the red, green and blue
spectral bands have been proposed in the literature. Among
them, color index of vegetation extraction (CIVE) [12], ex-
cess green index (ExG) [13], and excess green minus excess
red (ExGR) [14] are used. The advantages of using these in-
dices is that they accentuate a particular color such as plant
greenness, which should be intuitive for human comparison
[15]. Moreover, they do not require the near-infrared band,
which is not available for RGB color images, such as NDVI.
Different tests of these indices can be found in [13, 15].

Current shadow/vegetation detection methods in the lit-
erature detect separately shadow regions and vegetation re-
gions [16], [17]. The drawback of these methods is that, for
example, a vegetated pixel covered by shadow can be classi-
fied as vegetation (by a vegetation detection algorithm), and
at the same time as shadow (by a shadow detection algo-
rithm). Thus, these methods can not provide a sufficiently
good segmentation map. In fact, visual inspection also has
a similar problem since the pixel information is imprecise
and uncertain. In this paper, we propose a new method of
simultaneously detecting shadow regions and vegetation re-
gions, in other words, segmenting images into three classes:
shadow, vegetation and other. Each feature image computed
from shadow index or vegetation index can be considered as
an information source. In this context, Dempster-Shafer (DS)
fusion [18, 19] that aims at merging different data sources is
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employed. The principal advantage of this theory is its ability
to take into account ignorance of the information by affect-
ing a degree of confidence which is called a mass function
to all simple and compound hypotheses. However, since this
isolates pixel by pixel use, assuming that each pixel is inde-
pendent of its neighbors and does not take into account spatial
dependencies, the performance of the DS fusion is sensitive
to noise. The Markov Random Field (MRF) [20] is thus em-
ployed to incorporate spatial information into the image.

This approach differs from what can be found in the lit-
erature in three distinct aspects: firstly, it introduces a new
scheme to simultaneously detect shadow regions and vege-
tation regions. Secondly, the use of DS theory allows us to
combine different shadow indices and vegetation indices in
order to increase the information quality and to obtain a more
reliable and accurate shadow/vegetation detection. Thirdly,
we exploit image geometric information by using a Markov
random field, that is often used in image segmentation but
rarely in the shadow/vegetation detection case.

The remaining paper is organized as follows. In section
2, we introduce the shadow index and vegetation index which
are employed. The theory of evidence and its application in
shadow/vegetation detection is described in Section 3. Sec-
tion 3.2 outlines the link between MRF and DS fusion. The
experimental results are reported in Section 4, and the paper
is concluded in Section 5.

2. PHOTOMETRIC INVARIANT COLORMODELS

We propose exploiting the common assumptions made on
shadows [8], using the shadow indices proposed in the lit-
erature [1–7]. The behaviour of these shadow indices have
been evaluated and the best results are obtained using the c3
component of the c1c2c3 color space [21]. The c3 component
has been successfully used to detect shadow regions in [2,22],

and defined as follows: c3 = arctan

(
B

max(R,G)

)
for R,G

and B representing respectively the red, green and blue color
components in the image. One of the problems though when
using the c3 index is its instability for certain color values that
lead to the misclassification of non-shadow pixels as shadow
(false positives) [2, 22]. Then, we propose to combine lumi-
nance L (HSL color space) and c3 to detect shadow regions as
proposed in [23] even if luminance L detects the areas which
includes shadows and vegetation. For vegetation detection,
among different vegetation indices presented in [15], of re-
markable effectiveness is the excess green ExG, one of the
most famous agronomic contrasts defined by [13] as follows:

ExG =
2×G− R− B

R +G+ B
.

3. THEORY OF EVIDENCE

Dempster-Shafer theory (DS) is a mathematical theory of ev-
idence. This theory was developed by A.P Dempster [18] and
G. Shafer [19] and often described as a generalization of the
Bayesian theory to represent information that is inaccurate
and uncertain at the same time.

3.1. Use of DS Evidence Theory for shadow/vegetation
detection

Given the (R,G,B) color representation of a pixel, we use c3
to build Y1, ExG to build Y2, L to build Y3. Let us denote
ω1, ω2, ω3, three clusters representing respectively “shadow”,
“vegetation” and “other”. Our algorithm takes three feature
images Y1, Y2, Y3 as the input, and the output is a segmented
imageX , where values ofX are in Ω = {ω1, ω2, ω3}.

The automatic thresholding technique proposed by Otsu
[24] is applied over the image Y1, Y2, Y3 for determining
the optimal threshold to extract respectively shadow re-
gions [1, 3], vegetation regions and dark regions (that may
include shadow regions and vegetation regions). After thresh-
olding, image Y1 (resp. Y2 ; Y3) is segmented into two classes
ω1 and {ω2, ω3} (resp. ω2 and {ω1, ω3} ; {ω1, ω2} and
ω3). DS theory for image segmentation allows us to fuse
one by one the pixels from the three images Y1, Y2, Y3 and
to infer simple hypothesesHi representing individual cluster:
Hi = {ωi}, Ai designating either simple hypotheses Hi or
a union of simple hypotheses. The frame of discernment is
Θ = {{ω1}, {ω2}, {ω3}}.

The method of generating mass functions is based on the
assumption of Gaussian distributions [25]. The mass func-
tion for image Y1, defining on {∅, A1, A2,Θ}, where A1 =
{ω1}, A2 = {{ω2}, {ω3}}, is estimated as follows:

m1(Ai) =
1

σ1i

√
2π

exp

(
− (y1s − μ1i)

2

2σ1
2
i

)
(1)

Here, i ∈ {1, 2}, y1s is the value of the considered pixel s
(in image Y1). μ1i (resp. σ1

2
i ) represents the mean (resp. the

variance) of pixels with hypothesis Ai present in Y1. They
are respectively estimated by μ1i =

1
|Ai|

∑
s∈Ai

y1s , σ1
2
i =

1
|Ai|−1

∑
s∈Ai

(y1s − μ1i)
2 where | Ai | denotes the number

of pixels verifyingAi.
The advantage of DS theory lies in representing uncer-

tainty by means of belief on the whole frame of discernment.
This basic belief assignment allows definingm1(Θ) with the
following equation: m1(Θ) = (1−m1(A1))×(1−m1(A2)).
These mass functions are then normalized so that their sum is
equal to 1. The mass functions for image Y2, defining on
{∅, {ω2}, {{ω1}, {ω3}},Θ} and the mass functions for Y3,
defining on {∅, {{ω1}, {ω2}}, {ω3},Θ} are estimated in the
same way. Once the mass function of the three images are es-
timated, their combination is performed using the orthogonal
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sum :
m = m1 ⊕m2 ⊕m3 (2)

with ⊕ is the sum of DS orthogonal rule [18]. The decisional
procedure consists in choosing the maximum plausibility, the
maximum belief or the pignistic probability as being the most
likely hypothesisHi [18]. Decision-making is carried out on
simple hypotheses which represent the classes in the images.

3.2. Markov Random Field Modeling

The DS fusion processes at a pixel-level, assumes that each
pixel in the image is independent of its neighbors and does
not take into account spatial dependencies. Thus, the per-
formance of the DS fusion is highly sensitive to noise. To
overcome this shortcoming, the MRF [26] may be employed,
to consider not only the measurements at the pixel’s loca-
tion, but also the class values among its closest neighbors.
Let X be a random field over the set S of pixels, taking
its values from a finite set of classes Ω = {ω1, . . . , ωK}
and x a realization of X . xs denotes the value of x at the
pixel s ∈ S. xs is a realization of the random variable Xs.
By definition, X is a Markov random field if and only if
p(Xs = xs|xS−{s}) = p(xs|xVs

) where Vs is the set of sites
neighboring s.

Given the observed images y = (y1, . . . , ym), the seg-
mented image x can be obtained using the MAP estimate of
X . Thus,

x̂MAP = argmax
x

{P (X = x|Y = y)}
= arg min

x

{−log(p(y|x)) − log(p(x))} (3)

This problem can be solved by the iterative conditional mod-
els (ICM) algorithm [20]. In this method, a raster scan is used
to iteratively visit all the pixels in fieldX . We denote x̂S−{s}
as a provisional estimate of the segmentation field everywhere
except at location s. Given the data y and the current segmen-
tation x̂S−{s}, the algorithm updates the current segmentation
x̂s at pixel s, and replaces it with the new value x̂s whichmax-
imizesP (xs|y, x̂S−{s})with respect to xs. Since we consider
X as an MRF, the latter follows from Bayes’ theorem that

P (xs|y, x̂S−{s}) = p(ys|xs)p(xs|x̂Vs
) (4)

Given this second-order neighborhood, where the prior
probability term in Eq. 4 can be assigned using

p(xs|x̂Vs
) =

e−β
∑

l∈Vs
{1−δ(xs,x̂l)}∑

xs∈Ω
e−β

∑
l∈Vs

{1−δ(xs,x̂l)}
(5)

where δ(·) stands for the Kronecker’s delta function.

3.3. DS Theory in Markovian Context

In recent years, both the MRF and DS theory of evidence
have been incorporated into more general methods for scene

classification, often involving multisource analysis [27–29].
In fact, the probabilistic framework assigns likelihood values
p(ys|xs) only for each class ωi ∈ Ω. From the view of evi-
dence theory, the likelihood can be assimilated to a mass func-
tion which charges the singleton Hxs

= {ωi}. In [29], the
authors proposed replacing the likelihood term in Eq. (4) by
the plausibility function to take into account all information
contained in single and compound hypothesis, as follows:

p(ys|xs) ≡ Plss(Hxs
) =

∑
Ai∩Hxs �=∅

ms(Ai) (6)

For each pixel s, the mass function ms(Ai) is computed by
using Eq. (2). And the conditional probability in Eq. (5)
which assigns values to single hypotheses can be replaced by:

ms(Ai|x̂Vs
) =

e
−

∑
Hk∩Ai �=∅ β

∑
l∈Vs

{1−δ(ωk,x̂l)}

∑
Aj⊂Θ e

−
∑

Hk∩Aj �=∅ β
∑

l∈Vs
{1−δ(ωk,x̂l)}

(7)
to deal with the compound hypothesesAi ⊂ Θ.
Considering the likelihood and the conditional membership
components in Eqs. (6) and (7) as two “evidential” sources
of information, the Dempster-Shafer orthogonal rule is used
to combine these two sources of information. The posterior
probability in Eq. (4) can be replaced using Ms(.), which
carries the joint information.

Ms(Ai) =
1

1−K
∑

Ap∩Aq=Ai

ms(Ap)ms(Aq|x̂Vs
) (8)

where K =
∑

Ap∩Aq=∅ms(Ap)ms(Aq|x̂Vs
). Once all of the

mass function of the single and compound hypotheses related
to pixel s are determined, several approaches can be chosen
for the estimation of x̂s, for example, by maximizing the plau-
sibility function :

x̂s = argmax
xs

⎛
⎝ ∑

Ai∩Hxs �=∅

Ms(Ai)

⎞
⎠

4. EXPERIMENTAL RESULTS

The proposed iterative data fusion method takes as input three
feature images c3, ExG, and L, resulting in a segmented im-
ageX with labels in { “shadow”, “vegetation”, “other”}. The
shadow/vegetation detection method using Otsu’s threshold-
ing approach and data fusion technique, called THDS, is used
as the initialization of our algorithm. Through iterations, we
obtain the final shadow/vegetation detection result. We com-
pare the proposed method with the shadow detection method
based on Otsu’s thresholding technique, the vegetation detec-
tion method based on Otsu’s thresholding technique and the
THDS method. Comparative experimental results are shown
in Fig. 1 and Table 1.
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(a) (b) (c)

(d) (e) (f) (g)

Fig. 1. (a) RGB remote sensing image of urban areas, (b) the manually interpreted shadow masks (black areas) and vegetation masks (green areas) as ground
truth of shadow regions and vegetation regions respectively, (c) shadow detection (SD) by Otsu’s method, (d) vegetation detection (VD) by Otsu’s method, (e)
dark (shadow + vegetation) detection by Otsu’s method with luminance L, (f) The THDS method, and (g) The proposed method. We observe that the proposed
method solves the problems of false dismissals, and improves the accuracy of segmentation. The fusion corrects the misclassification of each feature, and the
ICM removes the small objects in segmentation. The shape of shadow regions is precisely obtained since the image geometric information is exploited through
MRF modelling (blue circles).

Shadow detection Vegetation detection

Method Producer’s accuracies User’s accuracies Overall
accuracy Producer’s accuracies User’s accuracies

Overall
accuracy

Shadow
Ps(%)

Nonshadow
Pn(%)

Shadow
Us(%)

Nonshadow
Un(%)

τ(%)
Vegetation
Pv(%)

Nonvegetation
Pv(%)

Vegetation
Uv(%)

Nonvegetation
Uv(%)

τ(%)

SD 56.53 99.92 99.58 86.98 88.81

VD 92.53 44.83 26.61 96.52 53.31

THDS
method 70.68 99.65 98.59 90.81 92.24 97.08 73.01 43.74 99.14

77.29

Proposed
method 89.17 99.19 97.45 96.38 96.63 99.11 95.75 83.47 99.80 96.35

Table 1. Shadow/vegetation detection accuracy measurements of the image in Fig. 1. In this work, we adopt the same metrics and accuracy table from [1]
and [8]. The evaluation metrics are defined based on true positive (TP), false negative (FN), false positive (FP), true negative (TN). Concerning shadows (for
vegetation detection, these parameters are defined in the same way), TP is the number of shadow pixels correctly identified, FN is the number of shadow pixels
identified as non-shadow, FP is the number of non-shadow pixels identified as shadows and TN is the number of non-shadow pixels correctly identified. The
sum TP + FN + FP + TN stands for the total number of pixels in the image. Among these metrics, the producer’s accuracies (also known as recall) indicate
how well pixels of known categories are correctly classified. The user’s accuracies (also known as precision) indicate the probabilities of pixels being correctly
classified into actual categories on the ground. Combining the accuracies of the user and the producer, the overall accuracy τ can be used to evaluate the
correctness percentage of the algorithm. For a good algorithm, values of these metrics should be high.

From the aforementioned three types of accuracy, Table 1
shows the accuracy comparison for shadow detection using
Otsu’s method, vegetation detection using Otsu’s method, the
THDS method and our proposed method. It is shown that the
accuracy of our proposed method is high and through iter-
ations, the ICM provides better accuracy performance com-
pared with the THDS method.

5. CONCLUSION

This paper presents a novel shadow/vegetation detection strat-
egy based on a fusion procedure whose goal is to manage the
imprecision and uncertainty of a pixel’s information concern-
ing shadow and vegetation. On the other hand, this fusion

procedure also makes it possible to combine different shadow
index c3, vegetation index ExG and the luminance L. The
spatial correlation between neighboring pixels is also taken
into account using the MRF modelling in order to finally
obtain a more reliable and efficient segmentation map with
good accuracy, which is demonstrated in the experimental
results. This method has the interest in extending for combin-
ing other invariant color features. For example, if image has
the NIR bands, the use of NDVI vegetation index may detect
better vegetation, and since sensor radiance received from
shadowed regions decreases from short to long wavelengths
due to scattering, it is easier to distinguish shadows from non-
shadows with NIR channels rather than visible channels [8].
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